Регенеративные виды добычи. Возобновляемые источники энергии. Важность использования

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат , добавлен 04.06.2015

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат , добавлен 18.10.2013

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа , добавлен 15.12.2011

    Использование возобновляемых источников энергии. Энергия солнца, ветра, биомассы и падающей воды. Генерирование электричество из геотермальных источников. Сущность геотермальной энергии. Геотермальные электрические станции с комбинированным циклом.

    ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ, потоки энергии, постоянно существующие или периодически возникающие в окружающей среде. К основным возобновляемым источникам энергии относятся: солнечное излучение, гидроэнергия, энергия ветра, биомассы, морских и океанических течений, энергия приливов и отливов, тепловая энергия недр Земли (геотермальная энергия). Потенциальные запасы возобновляемых источников энергии намного превышают все перспективные потребности человечества в энергии, а также потенциал невозобновляемых источников энергии (органических и ядерное топливо). Использование возобновляемых источников энергии (нетрадиционная энергетика) позволит решить проблемы сокращения запасов невозобновляемых топливно-энергетических ресурсов, обеспечения энергоресурсами децентрализованных потребителей и регионов с дальним завозом топлива, снижения расходов на его доставку. Технический потенциал возобновляемых источников энергии России составляет примерно 4,6 миллиарда тонн условного топлива (т.у.т.) в год (в Российской Федерации принят топливный тонно-эквивалент по углю, равный 29,3·10 9 Дж; в Европе и США принят топливный тонно-эквивалент по нефти, равный 41,8·10 9 Дж), что превышает современный уровень энергопотребления России, составляющий около 1,2 миллиарда т.у.т. в год.

    Солнечное излучение (самый мощный источник энергии на Земле) существенно меняется в зависимости от времени суток, состояния атмосферы, времени года. Годовой поток солнечной радиации на Земле находится в пределах 3000-8000 МДж/м 2 в год (800-2200 кВт·ч/м 2). Ежегодное количество солнечной энергии у поверхности Земли в 25 раз превышает энергию всех мировых разведанных запасов угля и в 3-5 тысяч раз больше ежегодно расходуемой человечеством энергии. В России экономический потенциал использования солнечной энергии эквивалентен 2300 миллионам т.у.т., освоено 12,5 миллионов т.у.т.

    Солнечную энергию можно использовать для производства электроэнергии непосредственным преобразованием в электрическую энергию при помощи солнечных батарей (смотри также Гелиотехника, Гелиоэлектрическая станция).

    Гидроэнергетические источники оценивают количеством энергии, которая может быть получена, если перегородить все крупные реки планеты, что соответствует 9802 миллиардам кВт·ч, в том числе 852 миллиарда кВт·ч (около 8,7% мировых запасов) составляет экономический потенциал гидроэнергетических ресурсов России. Наибольшими гидроэнергетическими запасами обладают Китай, Россия, США и Бразилия. В России основные гидроэнергетические ресурсы (около 80%) расположены в малообжитых районах Сибири и Дальнего Востока (освоено около 10%). Поэтому создание в этих районах крупных ГЭС представляется неоправданным как с экономической, так и с экологической точек зрения (приведёт к затоплению обширных пространств тайги). Производство современных гидроагрегатов мощностью 10-5860 кВт позволяет возобновить в России строительство малых ГЭС. Экономический потенциал использования малой гидроэнергетики эквивалентен 125 миллионам т.у.т., освоено 65 миллионов т.у.т. (на 2003 действуют около 50 микро-ГЭС мощностью от 1,5 до 50 кВт) (смотри Гидроэнергетика).

    Использование энергии ветра в различных районах Земли неодинаково. В России экономический потенциал энергии ветра эквивалентен 2000 миллионов т.у.т., освоено 10 миллионов т.у.т. (смотри Ветроэлектрическая станция, Ветроэнергетика).

    Биомасса, получаемая из продуктов сельского хозяйства, лесоводства, аквакультуры, промышленных и бытовых органических отходов, служит для производства энергии и биотоплива (энергетическая ферма). Основной целью переработки сырья могло бы быть исключительно производство энергии, но более выгодно использовать биомассу для получения и биотоплива (например, метилового спирта). В России экономический потенциал энергии биомассы эквивалентен 53 миллионам т.у.т., освоено 35 миллионов т.у.т. (2005). Имеются технические разработки по использованию биогаза в качестве автомобильного топлива (смотри Биогаз, Биомасса).

    Океанические источники включают энергию течений на всей акватории Мирового океана, приливов, волн, смешивания пресные и солёные морские воды, разности (градиентов) температур, существующей между поверхностными и глубинными слоями воды в тропических районах океанов. Для технической реализации целесообразно освоение только наиболее крупных течений, приливов с большой амплитудой, участков океана со значительной разницей солёности между речным стоком и морской водой и с температурным перепадом в 20°С, при котором может быть эффективно осуществлён Карно цикл. На преобразовании энергии приливов основано действие приливных электростанций (ПЭС). Наиболее известны: ПЭС мощностью 240 МВт, расположенная в Бретани (Франция), и небольшая опытная станция мощностью 400 кВт в Кислой губе на побережье Баренцева море (Россия). К перспективным проектам развития приливной энергетики в России относятся Мезенская ПЭС на Белом море (19 200 МВт), Тугурская ПЭС на Охотском море (7980 МВт). В Мировом океане разность температур между тёплыми поверхностными водами и более холодными (придонными) достигает 20°С. Это обеспечивает непрерывно пополняемый запас тепловой энергии, которая может быть преобразована в другие виды (механическую, электрическую).

    Геотермальные источники аккумулируют неисчерпаемое количество энергии в недрах земли. Ресурсы, пригодные для промышленного использования, разделяют на гидрогеотермальные и петрогеотермальные (смотри в статье Геотермальные ресурсы). Гидрогеотермальные источники (в том числе системы с горячей водой) распространены гораздо шире, чем системы, вырабатывающие перегретый пар (около 240°С) под давлением до 3,5 МПа, с небольшим содержанием других газов, отсутствием (или малым содержанием) воды (известные также как системы сухого пара). Пар, обычно высокого качества (содержит незначительное количество твёрдых частиц), можно направлять сразу же после извлечения из недр в обычную паровую турбину для производства электроэнергии. Первая в России Паужетская ГеоТЭС мощностью 5 МВт, доведённая впоследствии до мощности 11 МВт, создана в 1967 году на южной оконечности полуострова Камчатка. На Верхнемутновской ГеоТЭС мощностью 12 МВт и Мутновской ГеоТЭС мощностью 80 МВт (Камчатка) в качестве теплоносителя используется пар местного месторождения (давление 0,8 МПа). В 1989 году на Северном Кавказе создана опытная Ставропольская ГеоТЭС, где в качестве теплоносителя применяется термальная вода с температурой 165°С, добываемая с глубины 4,2 км. Функционирует океанская ГеоТЭС на острове Итуруп (Сахалинская область) суммарной мощностью 30 МВт. Находится в эксплуатации Курильская ГеоТЭС мощностью 0,5 МВт. Месторождения парогидротермальных источников имеются в России только на Камчатке и Курилах, поэтому геотермальная энергетика не может играть значительную роль в масштабах страны, однако для указанных районов, энергоснабжение которых целиком зависит от привозного топлива, геотермальная энергетика способна радикально решить проблему энергообеспечения (смотри также Геотермальная электростанция).

    Экологический аспект. Существует мнение, что выработка электроэнергии за счёт возобновляемых источников представляет собой абсолютно экологически «чистый» вариант. Это не совсем верно, так как эти источники энергии обладают принципиально иным спектром воздействия на окружающую среду по сравнению с традиционными энергоустановками на органическом топливе. Использование возобновляемых источников энергии может привести к изменению теплового баланса, затемнению больших территорий солнечными концентраторами (солнечная энергия); шумовым воздействиям, локальным климатическим изменениям, опасности для мигрирующих птиц и насекомых (ветроэнергетика); выбросу твёрдых частиц, канцерогенных и токсичных веществ, диоксида углерода, биогаза (биоэнергетика); появлению биологических аномалий под воздействием гидродинамических и тепловых возмущений, периодическому затоплению прибрежных территорий, эрозии побережья, смене движения прибрежных песков (гидротермальная энергетика, энергия приливов, волн); изменению уровня грунтовых вод, оседанию почвы, заболачиванию (геотермальная энергетика) и др.

    Лит.: Бойлс Д. Биоэнергия: технология, термодинамика, издержки. М., 1987; Васильев Л. Л., Гракович Л. П., Хрусталев Д. К. Тепловые трубы в системах с возобновляемыми источниками энергии. Минск, 1988; Андреев В. М., Грилихес В. А., Румянцев В. Д. Фотоэлектрическое преобразование концентрированного солнечного излучения. Л., 1989; Сичкарев В. И., Акуличев В. А. Волновые энергетические станции в океане. М., 1989; Лабунцов Д. А. Физические основы энергетики. М., 2000.

    Учебный год

    Лекция 20

    Энергосберегающие технологии и освоение новых источников энергии

    Условно источники энергии можно поделить на два типа: невозобновляемые и возобновляемые . К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, не экологична, и многие из них истощаются.

    Возобновляемые источники энергии - это источники, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из природных ресурсов - таких как солнечный свет, ветер, движении воды в реках или морях, приливы, биотопливо и геотермальная теплота - которые являются возобновляемыми, т.е. пополняются естественным путем.

    Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

    Примеры использования возобновляемой энергии.

    1.Ветроэнергетика является бурно развивающейся отраслью. Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Использование энергии ветра растет примерно на 30 процентов в год и широко используется в странах Европы и США.

    2. На гидроэлектростанциях (ГЭС) в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободнопоточных (бесплотинных) ГЭС.

    Особенности этого источника энергии:

    Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций;

    Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;

    Возобновляемый источник энергии;

    Значительно меньше воздействует на воздушную среду, чем другие виды электростанций;


    Строительство ГЭС обычно более капиталоёмкое;

    Часто эффективные ГЭС удалены от потребителей;

    Водохранилища часто занимают значительные территории;

    Лидерами по выработке гидроэнергии на человека являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

    3.Солнечная энергетика - направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов.

    Способы получения электричества и тепла из солнечного излучения:

    Получение электроэнергии с помощью фотоэлементов;

    Преобразование солнечной энергии в электричество с помощью тепловых машин: паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

    Гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах);

    Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор);

    Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием), преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

    Достоинства солнечной энергетики :

    Общедоступность и неисчерпаемость источника;

    Теоретически полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной способности) земной поверхности и привести к изменению климата.

    Недостатки солнечной энергетики :

    Зависимость от погоды и времени суток;

    Как следствие необходимость аккумуляции энергии;

    Высокая стоимость конструкции;

    Необходимость периодической очистки отражающей поверхности от пыли;

    Нагрев атмосферы над электростанцией.

    4.Приливные электростанции . Электростанциями этого типа являются особым видом гидроэлектростанции, использующим энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

    Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.

    Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

    5.Геотермальная энергетика - направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении. Крупнейшей в мире геотермальной установкой является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт.

    6.Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты,топливные гранулы, щепа, солома, лузга) и газообразное (биогаз, водород).

    США и Бразилия производят 95 % мирового объёма биоэтанола. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США из кукурузы. По оценкам Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%.

    Этанол является менее «энергоплотным» источником энергии чем бензин; пробег машин, работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» от английского Ethanol), на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя двигатели внутреннего сгорания прекрасно работают на Е10 (некоторые источники утверждают, что можно использовать даже Е15). На «настоящем» этаноле могут работать только т. н. «Flex-Fuel» машины («гибкотопливные» машины). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива.

    Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. По расчётам экономистов из Университета Миннесоты, в результате биотопливного бума число голодающих на планете к 2025 году возрастёт до 1,2 млрд. человек.

    С другой стороны, продовольственная и сельскохозяйственная организация ООН (FAO) в своем отчете говорит о том, что рост потребления биотоплив может помочь диверсифицировать сельскохозяйственную и лесную деятельность, способствуя экономическому развитию. Производство биотоплив позволит создать в развивающихся странах новые рабочие места, снизить зависимость развивающихся стран от импорта нефти. Кроме этого производство биотоплив позволит вовлечь в оборот ныне не используемые земли. Например, в Мозамбике сельское хозяйство ведётся на 4,3 млн. га из 63,5 млн. га потенциально пригодных земель. По оценкам Стэндфордского университета во всём мире из сельскохозяйственного оборота выведено 385-472 миллиона гектаров земли. Выращивание на этих землях сырья для производства биотоплив позволит увеличить долю биотоплив до 8 % в мировом энергетическом балансе. На транспорте доля биотоплив может составить от 10 % до 25 %.

    7.Водородная энергетика - развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).

    Топливный элемент - электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе. Топливные элементы - это электрохимические устройства, которые могут иметь очень высокий коэффициент преобразования химической энергии в электрическую (~80 %). Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент). В отличие от топливных элементов, одноразовые гальванические элементы содержат твердые реагенты, и когда электрохимическая реакция прекращается, должны быть заменены, электрически перезаряжены, чтобы запустить обратную химическую реакцию, или, теоретически, в них можно заменить электроды. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в нее реагенты и сохраняется работоспособность самого элемента. Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода), образуют устройство для хранения энергии. Общий КПД такой установки (преобразование электрической энергии в водород, и обратно в электрическую энергию) 30-40 %.

    Топливные элементы обладают рядом ценных качеств, среди которых:

    7.1 Высокий КПД : у топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин. Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %.

    7.2Экологичность . В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды. Но это лишь в локальном масштабе. Нужно учитывать экологичность в тех местах, где производятся данные топливные ячейки, так как производство их само по себе уже составляет некую угрозу.

    7.3 Компактные размеры . Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях.

    Проблемы топливных элементов .

    Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта? Топливные элементы, в силу низкой скорости химических реакций, обладают значительной инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (сверхконденсаторы, аккумуляторные батареи). Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

    Существует множество способов производства водорода, но в настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, так как он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается.

    Гидроэлектроэнергия является очередным крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. В 2010 году 16,7% мирового потребления энергии поступало из возобновляемых источников. Доля возобновляемой энергии уменьшается, но это происходит за счёт сокращения доли традиционной биомассы, которая составила всего 8,5% в 2010 году. Доля современной возобновляемой энергии растёт и в 2010 году составила 8,2%, в том числе гидроэнергия 3,3%, для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%. Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 196600 мегаватт (МВт) в 2010 году, и широко используется в странах Европы и США. Ежегодное производство в фотоэлектрической промышленности достигло 6900 МВт в 2008 году . Солнечные электростанции популярны в Германии и Испании. Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт. Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт. Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 процентов потребности страны в автомобильном топливе . Топливный этанол также широко распространен в США.

    Примеры возобновляемой энергии

    Энергия ветра

    Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую,тепловую и любую другую форму энергии для использования в народном хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества),ветряных мельниц (для получения механической энергии) и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

    В перспективе планируется использование энергии ветра не посредством ветрогенераторов , а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте . Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами . Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток .

    Гидроэнергия

    Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

    Энергия волн

    Энергия солнечного света

    Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

    К СЭС косвенного действия относятся:

    • Башенные - концентрирующие солнечный свет гелиостатами на центральной башне наполненной солевым раствором.
    • Модульные - на этих СЭС теплоноситель, как правило масло , подводится к приемнику в фокусе каждого параболо -цилиндрического зеркального концентратора и затем передает тепло воде испаряя её.

    Схема солнечного пруда:
    1 - слой пресной воды; 2 - градиентный слой;
    3 - слой крутого рассола; 4 - теплообменник.

    Крупнейшая электростанция подобного типа находится в Израиле , её мощность 5 Мвт, площадь пруда 250 000 м 2 , глубина 3 м.

    Геотермальная энергия

    Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих . В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров . Доступ к подземным источникам осуществляется бурением скважин.

    Биоэнергетика

    Данная отрасль энергетики специализируется на производстве энергии из биотоплива . Применяется в производстве как электрической энергии , так и тепловой .

    Биотопливо первого поколения

    • Водоросли - простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, таких как соевые бобы);
    • Рыжик (растение) - растущий в ротации с пшеницей и другими зерновыми культурами;
    • Jatropha curcas или Ятрофа - растущее в засушливых почвах, с содержанием масла от 27 до 40 % в зависимости от вида.

    Из биотоплив второго поколения, продающихся на рынке, наиболее известны BioOil производства канадской компании Dynamotive и SunDiesel германской компании CHOREN Industries GmbH .

    По оценкам Германского Энергетического Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Германии в автомобильном топливе. К 2030 году , с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Себестоимость производства составит менее €0,80 за литр топлива.

    Создана «Пиролизная сеть» (Pyrolysis Network (PyNe) - исследовательская организация, объединяющая исследователей из 15 стран Европы , США и Канады .

    Весьма перспективно также использование жидких продуктов пиролиза древесины хвойных пород. Например, смесь 70% живичного скипидара , 25% метанола и 5% ацетона , то есть фракций сухой перегонки смолистой древесины сосны , с успехом может применяться в качестве замены бензина марки А-80. Причём для перегонки применяются отходы дереводобычи: сучья , пень , кора . Выход топливных фракций достигает 100 килограммов с тонны отходов.

    Биотопливо третьего поколения - топлива, полученные из водорослей.

    Использованию постоянных процессов противопоставлена добыча ископаемых энергоносителей, таких как каменный уголь , нефть , природный газ или торф . В широком понимании они тоже являются возобновляемыми, но не по меркам человека, так как их образование требует сотен миллионов лет, а их использование проходит гораздо быстрее.

    Меры поддержки возобновляемых источников энергии

    На данный момент существует достаточно большое количество мер поддержки ВИЭ. Некоторые из них уже зарекомендовали себя как эффективные и понятные участникам рынка. Среди таких мер стоит более подробно рассмотреть:

    • Зеленые сертификаты;
    • Возмещение стоимости технологического присоединения;
    • Тарифы на подключение;
    • Система чистого измерения;

    Зеленые сертификаты

    Под зелеными сертификатами понимаются сертификаты, подтверждающие генерацию определенного объема электроэнергии на основе ВИЭ. Данные сертификаты получают только квалифицированные соответствующим органом производители. Как правило, зеленый сертификат подтверждает генерацию 1Мвт ч, хотя данная величина может быть и другой. Зеленый сертификат может быть продан либо вместе с произведенной электроэнергией, либо отдельно, обеспечивая дополнительную поддержку производителя электроэнергии. Для отслеживания выпуска и принадлежности «зеленых сертификатов» используются специальные программно-технические средства (WREGIS, M-RETS, NEPOOL GIS). В соответствии с некоторыми программами сертификаты можно накапливать (для последующего использования в будущем), либо занимать (для исполнения обязательств в текущем году). Движущей силой механизма обращения зеленых сертификатов является необходимость выполнения компаниями обязательств, взятых на себя самостоятельно или наложенных правительством. В зарубежной литературе «зеленые сертификаты» известны также как: Renewable Energy Certificates (RECs), Green tags, Renewable Energy Credits.

    Возмещение стоимости технологического присоединения

    Для повышения инвестиционной привлекательности проектов на основе ВИЭ государственными органами может предусматриваться механизм частичной или полной компенсации стоимости технологического присоединения генераторов на основе возобновляемых источников к сети. На сегодняшний день только в Китае сетевые организации полностью принимают на себя все затраты на технологическое присоединение.

    Фиксированные тарифы на энергию ВИЭ

    Накопленный в мире опыт позволяет говорить о фиксированных тарифах как о самых успешных мерах по стимулированию развития возобновляемых источников энергии. В основе данных мер поддержки ВИЭ лежат три основных фактора:

    • гарантия подключения к сети;
    • долгосрочный контракт на покупку всей произведенной ВИЭ электроэнергии;
    • гарантия покупки произведенной электроэнергии по фиксированной цене.

    Фиксированные тарифы на энергию ВИЭ могут отличаться не только для разных источников возобновляемой энергии, но и в зависимости от установленной мощности ВИЭ. Одним из вариантов системы поддержки на основе фиксированных тарифов является использование фиксированной надбавки к рыночной цене энергии ВИЭ. Как правило, надбавка к цене произведенной электроэнергии или фиксированный тариф выплачиваются в течение достаточно продолжительного периода (10-20 лет), тем самым гарантируя возврат вложенных в проект инвестиций и получение прибыли.

    Система чистого измерения

    Данная мера поддержки предусматривает возможность измерения отданного в сеть электричества и дальнейшее использование этой величины во взаиморасчетах с электроснабжающей организацией. В соответствии с «системой чистого измерения» владелец ВИЭ получает розничный кредит на величину, равную или большую выработанной электроэнергии. В соответствии с законодательством, во многих странах электроснабжающие организации обязаны предоставлять потребителям возможность осуществления чистого измерения.

    Инвестиции

    Во всём мире в 2008 году инвестировали $51,8 млрд в ветроэнергетику, $33,5 млрд в солнечную энергетику и $16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику $50 млрд, страны Америки - $30 млрд, Китай - $15,6 млрд, Индия - $4,1 млрд .

    В 2009 году инвестиции в возобновляемую энергетику во всём мире составляли $160 млрд, а в 2010 году - $211 млрд. В 2010 году в ветроэнергетику было инвестировано $94,7 млрд, в солнечную энергетику - $26,1 млрд и $11 млрд - в технологии производства энергии из биомассы и мусора .

    См. также

    Примечания

    Ссылки

    • Вы и «зеленая» энергетика , раздел сайта Всемирного фонда дикой природы

    ВВЕДЕНИЕ

    Современное развитие энергетики в России характеризуется ростом стоимости производства энергии. Наибольшее увеличение стоимости энергии наблюдается в удаленных районах Сибири и Дальнего Востока России, Камчатки, Курильских островов, где в основном используются децентрализованные системы электроснабжения на базе дизельных электростанций, работающих на привозном топливе. Совокупная стоимость электроэнергии в этих районах часто превышает мировой уровень цен и достигает 0,25 и более долларов США за 1 кВтчас.

    Мировой опыт показывает, что ряд стран и регионов успешно решают сегодня проблемы энергообеспечения на основе развития возобновляемой энергетики. Для интенсификации практического использования возобновляемых энергоресурсов в этих странах законодательно устанавливаются различные льготы для производителей «зеленой» энергии. Однако решающий успех возобновляемой энергетики определяется в конечном счете ее эффективностью в сравнении с другими более традиционными на сегодня энергоустановками топливной энергетики. Развитие технической и законодательной базы возобновляемой энергетики и устойчивые тенденции роста стоимости топливноэнергетических ресурсов уже сегодня определяют техникоэкономические преимущества электростанций, использующих возобновляемые энергоресурсы. Очевидно, что в перспективе эти преимущества будут увеличиваться, расширяя области применения возобновляемой энергетики и увеличивая ее вклад в мировой энергетический баланс.

    КЛАССИФИКАЦИЯ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ (ВИЭ)

    Возобновляемые источники энергии (ВИЭ) - это энергоресурсы постоянно существующих природных процессов на планете, а также энергоресурсы продуктов жизнедеятельности биоценозов растительного и животного происхождения. Характерной особенностью ВИЭ является их неистощаемость, либо способность восстанавливать свой потенциал за короткое время - в пределах срока жизни одного поколения людей.

    Генеральной Ассамблеей ООН в соответствии с резолюцией 33/148 (1978г.) введено понятие «новые и возобновляемые источники энергии», в которое включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, приливов океана, энергия биомассы древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников, гидроэнергия.

    Чаще всего к возобновляемым источникам энергии относят энергию солнечного излучения, ветра, потоков воды, биомассы, тепловую энергию верхних слоев земной коры и океана.

    ВИЭ можно классифицировать по видам энергии:

    Механическая энергия (энергия ветра и потоков воды);

    Тепловая и лучистая энергия (энергия солнечного излучения и тепла Земли);

    Химическая энергия (энергия, заключенная в биомассе).

    Если использовать понятие качества энергии - коэффициент полезного действия, определяющий долю энергии источника, которая может быть превращена в механическую работу, то ВИЭ можно классифицировать следующим образом: возобновляемые источники механической энергии характеризуются высоким качеством и используются в основном для производства электроэнергии. Так, качество гидроэнергии характеризуется значением 0,6…0,7; ветровой - 0,3…0,4. Качество тепловых и лучистых ВИЭ не превышает 0,3…0,35. Еще ниже показатель качества солнечного излучения, используемого для фотоэлектрического преобразования, - 0,15…0,3. Качество энергии биотоплива также относительно низкое и, как правило, не превышает 0,3.

    Целесообразность и масштабы использования возобновляемых источников энергии определяются в первую очередь их экономической эффективностью и конкурентоспособностью с традиционными энергетическими технологиями. Основными преимуществами ВИЭ по сравнению с энергоисточниками на органическом топливе являются практическая неисчерпаемость ресурсов, повсеместное распространение многих из них, отсутствие топливных затрат и выбросов вредных веществ в окружающую среду. Однако они, как правило, более капиталоемки, и их доля в общем энергопроизводстве пока невелика (за исключением гидроэлектростанций). Согласно большинству прогнозов, эта доля останется умеренной и в ближайшие годы. Вместе с тем во многих странах мира возрастает интерес к разработке и внедрению нетрадиционных и возобновляемых источников энергии. Это объясняется несколькими причинами.

    Во-первых, ВИЭ, уступая традиционным энергоисточникам при крупномасштабном производстве энергии, уже в настоящее время при определенных условиях эффективны в малых автономных энергосистемах, являясь более экономичными (по сравнению с энергоисточниками, использующими дорогое привозное органическое топливо) и экологически чистыми.

    Во-вторых, применение даже более дорогих, по сравнению с традиционными энергоисточниками, ВИЭ может оказаться целесообразным по другим, неэкономическим (экологическим или социальным) критериям. В частности, применение ВИЭ в малых автономных энергосистемах или у отдельных потребителей может существенно повысить качество жизни населения.

    В-третьих, в более отдаленной перспективе роль ВИЭ может существенно возрасти и в глобальном масштабе. В ряде стран и международных организаций проводятся исследования долгосрочных перспектив развития энергетики мира и его регионов. Интерес к этой проблеме обусловлен определяющей ролью энергетики в обеспечении экономического роста, ее существенным и все возрастающим негативным воздействием на окружающую среду, а также ограниченностью запасов топливно-энергетических ресурсов. В связи с этим, в будущем неизбежна кардинальная перестройка структуры энергетики с переходом к использованию экологически чистых и возобновляемых источников энергии. Мировым сообществом признана необходимость перехода к устойчивому развитию, предполагающему поиск стратегии, обеспечивающей, с одной стороны - экономический рост и повышение уровня жизни людей, особенно в развивающихся странах, с другой - снижение негативного влияния деятельности человека на окружающую среду до безопасного предела, позволяющего избежать в долгосрочной перспективе катастрофических последствий. В переходе к устойчивому развитию важная роль будет принадлежать новым энергетическим технологиям и источникам энергии, в том числе ВИЭ.

    К основным недостаткам, ограничивающим применение ВИЭ, следует отнести относительно низкую энергетическую плотность и крайнюю изменчивость. Низкая удельная мощность потока энергоносителя приводит к увеличению массогабаритных показателей энергоустановок, а изменчивость первичного энергоресурса, вплоть до периодов его полного отсутствия, вызывает необходимость в устройствах аккумулирования энергии или резервных энергоисточников. В результате, стоимость производимой энергии оказывается высока даже при отсутствии топливной составляющей в совокупной цене энергии.

    Вклад нетрадиционных возобновляемых источников энергии в мировой энергетический баланс в перспективе оценивается от 1…2 % до 10 %, хотя уже сегодня есть страны, где доля этих источников превышает половину национального энергетического баланса. Доля возобновляемых источников энергии в топливо-энергетическом комплексе разных стран мира постоянно возрастает. Это касается как развитых стран (США, Германия, Япония, Франция, Италия и др.), так и, особенно, развивающихся. Например, в 2000 г. доля возобновляемых источников энергии в производстве электроэнергии составила: Норвегия -99,7 %, Исландия - 99,9 %, Новая Зеландия - 72 %, Австрия - 72,3 %, Канада - 60,5 %, Швеция - 57,1 %, Швейцария - 57,2 %, Финляндия -33,3 %, Португалия - 30,3 %. Последнее десятилетие прошлого века для мира в целом характеризовалось неуклонным ростом доли возобновляемых источников энергии в общем энергобалансе большинства стран мира. Например, Великобритания - с 2,1 % до 2,7 %; Германия - с 3,7 % до 6,3 %; Франция - с 13,3 % до 14,6 %; Италия - с 16,4 % до 18,9 % и т. д.

    В предвидении серьезных экологических последствий во многих развитых странах разработана экономическая стратегия, распространяющаяся не только на энергетику, но и на другие отрасли производства и потребления ресурсов, которые могут нанести ущерб окружающей среде. Эта стратегия предусматривает ведущую роль государства в решении экологических проблем. Примером стимулирования развития энергетики на возобновляемых источниках является германский «Закон

    о приоритетности использования возобновляемых источников энергии». Резкое увеличение масштабов освоения ресурсов возобновляемых источников энергии в конце 20-го века было обеспечено в разных странах мира, особенно на начальных этапах их освоения, с помощью Государственных программ поддержки этой отрасли энергетики (Германия, Япония, США, Индия и т. д.)

    солнечный биотопливо ветроэлектростанция геотермальный