Камень ситалл

Ситалл камень 21 ВЕКА. Ювелирный мир знает множество камней: природных и искусственно выращенных. И, кажется, ничего нового в царстве минералов нас уже не ждет. Но это не так! Недавно модницам всего мира стал известен еще один необычный из них. отлично имитирующий природные аналоги.

Эту новинку разработали российские ученые. Название «ситалл»произошло от слияния двух слов «кремний» и «аллюминий». Ситалл или наноситал - это вставка нового поколения, уникальный материал, синтезированный в лаборатории, но в тоже время, состоящий из компонентов натуральных ювелирных камней. Поэтому он сходен по всем химико-физическим свойствам с натуральными минералами. Наиболее близок наноситал с естественным горным хрусталем. Ситалл камень кристально прозрачный и имеет широкий спектр возможных цветов. Это позволяет воссоздать почти все полудрагоценные и драгоценные камни: аметисты, корунды, топазы, цирконы, гранаты, хризолиты, изумруды, сапфиры и прочие.

Ситалл камень что это

Камень ситалл - это не «стекляшка». Он не теряет свой первоначальный вид со временем. Имеет широкую , высокую твёрдость (8 баллов) и износостойкость. Он имеет высокую термостойкость и устойчивость к химическим воздействиям. У ситалла доступная стоимость, по сравнению с природными минералами он стоит значительно дешевле.

Благодаря множеству оттенков украшения с ним легко подобрать к любой одежде. Ситалл камень, сочетающийся как с повседневными нарядами, так с деловыми и, даже, праздничными. Как в обрамлении золота, так и в обрамлении серебра этот он выглядит безупречно. Визуально ситалл камень очень трудно отличить от природных аналогов, поэтому он пользуется такой популярностью.

Ситалл камень и Наноситал

Наноситал- серьезный конкурент фианита на ювелирном рынке. Его неоспоримыми преимуществами в ювелирном мире стали дешевая стоимость и отличные физические свойства. Многие компании, например известная российская компания «Соколов», успешно применяет его в качестве вставок в своих украшениях.
камень ситалл, наноситалл, ситалл технический, камень наноситалл, топаз, аметист, аметрин,топаз, циркон, гранат, хризолит, изумруд, сапфир,
корунд, кварц, шпинель, синтезированные минералы, драгоценные и полудрагоценные вставки, синтезированные вставки, наноситалл,
ситалл камень что это, ситалл камень в ювелирных изделиях, что за камень ситалл

Нанакристаллы - российское изобретение, которым можно гордиться. Нам очень приятно, что синтезировать Нанокристаллы (торговая марка Nanocristall), пригодные для ювелирного производства удалось нашим друзьям из ювелирной компании Формика во главе с кандидатом геолого-минералогических наук Кареном Авакяном. Нанокристалл - синтетический материал с невероятными характеристиками, имитирующий Сапфир, изумруд, опал и многие другие драгоценные и полудрагоценные камни. Этот материал только набирает популярность, но мы уверены - у него большое и светлое будущее. Кстати, основным потребителем Нанокристаллов на данный момент является компания Pandora.

Cтатья генерального директора ГК «Формика», опубликованная журналом Ювелирное Обозрение.

Высококачественные ювелирные камни встречаются в природе крайне редко и имеют высокую стоимость. В качестве доступной по цене альтернативы на рынке представлены материалы, аналогичные по цвету, блеску, показателю преломления, прозрачности, твердости природным полудрагоценным, драгоценным и поделочным камням. Наряду с выращенными кристаллами используются также бесцветные и цветные стекла, хрусталь, прессованные, органические и стеклокерамические материалы. ГК «Формика» уже более 20 лет занимается производством, обработкой и продажей синтетических кристаллов, стекол и других материалов для ювелирной промышленности. За это время специалисты компании основательно изучили преимущества и недостатки практически всех существующих материалов.

Синтетические кристаллы

В России так принято называть все синтезированные человеком минералы, но ювелиры большинства других стран к данной группе относят только минералы, имеющие состав и свойства, аналогичные природным: алмаз, изумруд, александрит, рубин, сапфир, шпинель, аметист, цитрин, дымчатый кварц и др. Для их синтеза применяются такие широко распространенные методы, как гидротермальный, флюсовый, Вернейля, Чохральского, Багдасарова и др. Некоторые из названных технологий достаточно дорогие, но гарантируют получение кристаллов высокого качества. Рыночная цена синтезированных алмазов, гидротермальных изумрудов, александритов, выращенных методом Чохральского, даже при высокой стоимости производства все равно будет значительно ниже их природных аналогов. Еще одна группа синтетических ювелирных камней - фианиты, иттрий-алюминиевые и галий-гадолиниевые гранаты - не имеет аналогов в природе. По цвету они иногда имитируют некоторые природные камни, хотя их химический со- став и физические свойства отличаются. Камни этой группы принято называть имитациями. Например, бесцветный фианит является самой популярной и доступной по цене 18 имитацией бриллианта. Впервые выращенный в 1970-е годы в СССР, сегодня в промышленных объемах он производится в основном в США и Китае. Одно из подразделений ГК «Формика» уже более 15 лет успешно выращивает сырье и осуществляет огранку фиани тов специальных цветов: изумрудно-зеленого, сапфирового, коричневого, с эффектом «александрита» и др. За годы успешной работы с фианитами наши специалисты обнаружили не только преимущества этого минерала, но и его недостатки. Главный из них - неравномерность окраски. Эта особенность объясняется тем, что концентрация элементов- красителей в расплаве и в выращиваемом из него кристалле бывает не всегда одинакова (отношение этих концентраций в одних случаях меньше единицы, а в других – больше), поэтому по мере роста кристаллов насыщенность окраски мо- жет как увеличиваться, так и уменьшаться в зависимости от конкретного цвета и элемента-красителя. Еще одним ограничением для применения некоторых цветных фианитов является невозможность их использования для закрепки в воске и при технологии литья с камня- ми. Фианиты зеленого, синего, голубого, черного оттенков легко меняют цвет после термоудара в агрессивной окислительной среде.
Высокая плотность, твердость и великолепный блеск фианитов (при весьма невысокой стоимости) делают их незаменимыми для имитации бриллиантов: бесцветных, коричневых, розовых, желтых, голубых. Но эти же достоинства превращаются в недостатки при попытке имитации самоцветов, таких как изумруд, сапфир, аметист, танзанит, хризолит.

Цветные стекла и хрусталь

Стекла и хрусталь (стразы, шатоны, бисер и др.) используются преимущественно в бижутерии и крайне редко в ювелирном деле. Их стоимость ниже, они равномерно окрашены, имеют низкий показатель преломления, плотности, твердости, слабый блеск и непригодны для литья с камнями.

Ситалы, или Нанокристаллические материалы

Эти продукты состоят из аморфной матрицы и выращенных из нее и равномерно распределенных по всему объему наноразмерных (7-10 мм) кристаллов. Их состав и структура могут быть самыми разнообразными. Сочетая в себе все лучшие особенности и свойства стекол и кристаллов, ситалы с успехом применяются в производстве оптики, электро- ники и бытовой техники. Природным аналогом ситалов может служить обсидиан – эффузивная вулканическая порода, состоящая из алюмосиликатного стекла и мельчайших зародышевых кристаллов (кристаллитов) и микролитов. Этот исключительный материал заинтересовал специалистов «Формики» еще в 1993 году. Первые образцы из- умрудно-зеленого ситала были выращены в лаборатории одного из московских НИИ, однако потребовалось много лет, прежде чем нанокристаллические материалы были запущены в производство. Сегодня «Формика» является единственной в мире компанией, которая разработала и производит в промышленных масштабах этот совершенно новый для ювелирной промышленности синтетический материал . Компания владеет патентом на применение цветных ситалов в ювелирной промышленности и производит продукцию под следующими запатентованными названиями: «Нанокристалл» , «Nanocrystal» , «Nanogem» и «Formica nanogem» . Продуктовая линейка представлена шпинелью, сапфирином, рутилом, гранатом, кварцем и другими минералами (в зависимости от цвета), а вмещающая их аморфная матрица состоит из высокотемпературного алюмосиликатного стекла.

Нанокристаллы обладают совершенно уникальными физическими и оптическими свойствами:

  • твердость 7-7.5;
  • показатель преломления 1.61-1.64;
  • плотность 3-3.3 г/см3;
  • температура плавления 1650-1750 С;
  • цвет и блеск – максимально приближенные к основным природным самоцветам;
  • прозрачность – прозрачные, полупрозрачные и непрозрачные;
  • окраска – равномерная и однородная;
  • пригодность для литья с камнями – идеальная.

В настоящее время «Формика» производит прозрачные, полупрозрачные и непрозрачные виды нанокристаллов, которые почти идеально имитируют цвет, блеск, твердость и плотность таких самоцветов, как изумруд, сапфир, шпинель, топаз, хризолит, цитрин, гранат, розовый и дымчатый кварц, черная шпинель, бирюза и др.минералы. На представленных фотографиях ограненных цветных нанокристаллов заметна идентичность их окраски с природными самоцветами. Особенно удивляет сходство изумрудно-зеленого нанокристалла с природными аналогами: они неотличимы по цвету, блеску, показателю преломления и очень близки по плотности и твердости. Учитывая его весьма доступную стоимость, этот наноизумруд можно уверенно назвать достойной альтернативой гидротермальному изумруду, а также зеленому фианиту, иттрий-алюминиевому и галий-гадолиниевому гранатам. Сапфирово-синий нанокристалл заметно отличается от природных сапфиров по плотности, показателю преломления и твердости, но идентичен по цвету и блеску.Нашнаносапфир успешно конкурирует по цене с синтетическим корундом и пользуется большим спросом в диапазоне размеров от 0,8 до 15 мм. Хризолитовый, цитриновый, розовый, серый, все виды топазовых и другие прозрачные нанокристаллы очень близки своим природным аналогам как по цвету, так и по физическим свойствам. Они гораздо лучше имитируют соответствующие природные полудрагоценные камни, чем фианиты, гидротермальные или флюсовые кристаллы и пригодны для технологии литья с камнями. Изумрудно-зеленый, сапфирово-синий и некоторые другие цвета нанокристаллов мы производим в очень темном, темном, среднем и светлом вариантах. Темные разновидности используются для камней мелких размеров, а более светлые – для крупных огранок. Это позволяет получить одинаковую насыщенность в камнях разного разме- ра, что крайне важно для производителей ювелирных изделий. Наряду с наиболее популярными прозрачными нанокристаллами «Формика» производит черный, бирюзовый, молочно-белый, бежевый, медовый и другие полупрозрачные (опаловые) и непрозрачные виды.

Физические свойства Нанокристаллов (НК) в сравнении с соответствующими природными аналогами (ПР)

В настоящее время мы ограничили продажу нанокристаллов в сырье и предлагаем продукцию европейской машинной огранки фирмы «Прециоза», китайской машинной и ручной огранки высокого качества. Преимущество цветных нанокристаллов перед синтетическими кристаллами, стеклами и другими альтерна- тивными материалами столь очевидно, что, несмотря на глобальный экономический кризис в ювелирной отрасли, вся производимая нами продукция в больших объемах реализуется в Таиланде, Китае, Индии, Европе, США, России и странах СНГ. Внедрение Nanogem оказалось настолько востребованным, что в этом году в дни работы сентябрьской выставки Hong Kong Jewellery&Gem Fair мы вышли в финал конкурса, организованного журналом Jewelry News Asia, и получили награду за лучшую инновацию в категории «Производство и технология». Эта победа - еще одно подтверждение признания нанокристаллов ювелирами всего мира в качестве достойной имитации природных самоцветов!

Карен Авакян,
кандидат геолого-минералогических наук
(ГК «Формика»).

Ситаллы сита́ллы

стеклокристаллические материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределённых в стекловидной фазе. Высокая прочность, твёрдость, химическая и термическая стойкость, низкий температурный коэффициент расширения. Различают технические ситаллы (изготовляемые на основе искусственных композиций из различных химических соединений - оксидов, солей), петроситаллы (из горных пород - базальтов, диабазов и др.) и шлакоситаллы (из металлургических или топливных шлаков). Изделия из ситалла (панели, трубы, электроизоляторы и др.) получают методом стекольной или керамической технологии. Ситаллы применяют также для герметизации электровакуумных приборов, в оптике и т. д.

СИТАЛЛЫ

СИТА́ЛЛЫ (от «стекло и кристаллы»), стеклокристаллические (микрокристаллические) материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределенных в стекловидной фазе. Главная особенность ситаллов - тонкозернистая равномерная стеклокристаллическая структура. От неорганических стекол (см. СТЕКЛО НЕОРГАНИЧЕСКОЕ) они отличаются кристаллическим строением, а от керамических материалов (см. КЕРАМИКА) – более зернистой и однородной микрокристаллической структурой. Получают путем направленной (катализированной) кристаллизации стекол специальных составов, протекающей в объеме заранее отформованного изделия. Различают технические ситаллы (изготовляемые на основе искусственных композиций из различных химических соединений - оксидов, солей), петроситаллы (из горных пород - базальтов, диабазов и др.) и шлакоситаллы (из металлургических или топливных шлаков).
Свойства
В отличие от обычных стекол, свойства которых определяются в основном их химическим составом, для ситаллов решающее значение имеют структура и фазовый состав. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре, что обусловливает сочетание высокой твердости и механической прочности с отличными электроизоляционными свойствами, высокой температурой размягчения, хорошей термической и химической стойкостью. Свойства ситаллов изотропны. В них совершенно отсутствует вязкая пористость. Усадка материала при его переработке незначительна. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам. Плотность ситаллов лежит в пределах 2400-2950 кг/м 3 , прочность при изгибе – 70-350 МПа, временное сопротивление – 112-161 МПа, сопротивление сжатию – 7000-2000 МПа. Модуль упругости 84 – 141Гпа. Прочность ситаллов зависит от температуры. Твердость их близка к твердости закаленной стали (V - 7000-10500 МПа). Они весьма износостойки (f тр = 0,07-0,19). Коэффициент линейного расширения лежит в пределах (7– 300)10 -7 с -1 . Ситаллы с маленьким коэффициентом линейного расширения весьма нагревостойки. По теплопроводности ситаллы в результате повышенной плотности превосходят стекла. Термостойкость высокая в интервале температур 50 -9000­°С. Термическая устойчивость ситаллов обеспечивается очень небольшими, а иногда и отрицательными (от -7 . 10 -7 до +3 . 10 -7) коэффициентами термического расширения. Удельное объемное сопротивление 10 8 -10 12 Ом.м, электрическая прочность 25-75 МВ/м, тангенс угла диэлектрических потерь при 10 6 Гц (10-800).10 -4 . Многие ситаллы обладают высокой химической стойкостью к действию сильных кислот (кроме плавкиковой) и щелочей.
Оптическое кварцевое стекло (см. КВАРЦЕВОЕ СТЕКЛО) может быть заменено прозрачными ситаллами, которые имеют перед ним то преимущество, что в силу малых коэффициентов теплового расширения они нечувствительны к тепловым ударам. Прозрачность связана с размером кристаллов, меньшим длины полуволны видимого света и близостью показателей их преломления к стекловидной фазе.
История получения
Впервые поликристаллическое «фарфоровое» изделие, способное без деформаций выдерживать высокие температуры, получил при кристаллизации стекла французский химик Р. Реомюр (см. РЕОМЮР Рене Антуан) в 1739. Вновь эта идея возродилась лишь в конце 20-х гг. ХХ века, когда в ряде стран были созданы стеклокристаллические материалы с ценными техническими свойствами. В СССР наиболее интенсивно исследования в этой области проводились в Московском химико-технологическом институте им. Д. И. Менделеева. В конце 1950-х гг. в США был открыт способ стимулирования процесса кристаллизации стекла с целью получения новых ценных материалов из «расстеклованной массы». С этого времени процесс кристаллизации стекла, известный как самопроизвольный (или спонтанный) и приносивший большие потери на производстве, стало возможно контролировать. Первое официальное сообщение о создании новой отрасли по превращению стекла в тонкокристаллическую «стеклокерамику» было сделано в США в 1957. Новый материал, названный «пирокерам», представлял собой кристаллический материал, полученный из незакристаллизованного стекла. В ходе первых работ по стеклокристаллическим материалам многие исследователи давали им свои названия. Были выпущены модификации «пирокерама» под названиями «пирофлам», «центура», «фотокерам» и др. В Англии использовались названия «пиросил», «слагцерам». В Польше в зависимости от технологии изготовления - «силитал», «квазикерам», «шлаковый квазикерам». В СССР подобные силикатные поликристаллические материалы получили названия «ситаллы» или «шлакоситаллы». Помимо общности технологий производства, эти материалы объединяло еще и особое сочетание стеклообразной и кристаллической фаз, а также химическая кремнекислородная природа.
С 1960-х гг., когда начались интенсивные поиски наиболее рациональных способов изготовления нового материала, ситаллы стали широко использовать в промышленных масштабах.
Разновидности
Стеклокристаллические материалы разделяют на ряд видов, важнейшими из которых являются ситаллы, получаемые из технически чистых материалов, и шлакоситаллы, получаемые на основе дешевого сырья -металлургических шлаков. Технология шлакоситалла была разработана в Советском Союзе. В основе всех работ в этом направлении лежат исследования профессора И. И. Китайгородского (см. КИТАЙГОРОДСКИЙ Исаак Ильич) , впервые введшего в обиход само слово «ситалл» и разработавшего концепцию использования отходов различных производств, включая доменные шлаки, для получения нового вида материала из стекла. Первые шлакоситаллы в зависимости от чистоты шлакового сырья и его состава получались серых, коричневых, зеленовато-бурых тонов. Их применяли в основном в технике и строительстве (например, в виде листов и плиток для настила полов в химических цехах, гражданских сооружениях). Чтобы получить из них декоративные материалы, необходимо было расширить цветовую гамму. Любые цветные материалы можно создать на основе белого с использованием красителей. Выпуск белой разновидности шлакоситаллов был налажен в 1970. Панели и плиты из этого материала с цветовыми добавками стали применять при облицовке фасадов.
Получение
Технология получения ситаллов состоит из нескольких операций. Сначала получают изделия из стекломассы теми же способами, что и обычные стекла. Затем его подвергают чаще всего двухступенчатой термической обработке при температурах 500-700°С и 900-1100°С. На первой ступени происходит образование зародышей кристаллизации, на второй – развитие кристаллических фаз. Для обеспечения равномерной тонкокристаллической кристаллизации по всему объему были разработаны два подхода: гомогенное и гетерогенное ядрообразование. Если образование центров кристаллизации при зарождении новой фазы вещества внутри другой его фазы происходит в отсутствие посторонних частиц, то такой процесс определяется как гомогенная кристаллизация. В противном случае - это катализированная или гетерогенная кристаллизация. При помощи гомогенной кристаллизации получают рубиновые, опаловые и некоторые светочувствительные стекла, а по второй технологии - стеклокристаллические материалы. Содержание кристаллических фаз к окончанию технологического процесса достигает порядка 95%, размеры оптимально развитых кристаллов составляют 0,05-1 мкм. Изменение размеров при кристаллизации не превышает 1-2%.
Суммарные свойства стеклокерамики зависят от свойств и количественного содержания составляющих его частей - стеклообразной фазы и кристаллов, погруженных в стеклянную матрицу. В основе всех технологий получения стеклокристаллических материалов лежал метод направленной (катализированной) кристаллизации стекла.
Технические ситаллы получают на основе искусственных шихт тех частей силикатных систем, в которых кристаллизуются фазы, обладающие заданными свойствами. Для термостойких ситаллов такими фазами являются кордиерит (см. КОРДИЕРИТ) , сподумен (см. СПОДУМЕН) LiAlSi 2 O 6 , эвкриптит LiAlSiO 4 ; для высокопрочных - шпинель (см. ШПИНЕЛЬ (минерал)) , для диэлектриков - кордиерит, диопсид (см. ДИОПСИД) , волластонит (см. ВОЛЛАСТОНИТ) и т.д. Такие свойства как плотность, коэффициент термического расширения, теплопроводность, модуль упругости и диэлектрическая проницаемость зависят от свойств фаз и аддитивно меняются с изменением содержания этих фаз. На фазовый состав ситаллов влияют малые (до 1,5%) добавки модификаторов (Na, K, Ca, Ba и др.), стеклообразователей (В, Р и др.) и окислов промежуточного типа, введение которых не меняет состав основных фаз, но заметно увеличивает или снижает их содержание.
В качестве катализаторов и центров кристаллизации, обуславливающих выделение в материале при последующей термообработке огромного числа центров кристаллизации и создающих тем самым условия для образования тонкокристаллической структуры материала, используют катализаторы двух видов. К первому относятся металлические Au, Ag, Cu, Pt, Pd в количествах от сотых до десятых долей %. При варке они растворяются в стекломассе, а при дальнейшей термической обработке выделяются в виде микрокристаллов, вокруг которых формируется конечная структура ситалла. Второй вид катализаторов - оксиды и соли различных металлов: TiO 2 , P 2 O 5 , Cr 2 O 3 , ZrO 2 , ZnO; фторидные Na 3 AlF 6 , Na 2 SiF 6 , CaF 2 и др. (обязательно совместно с Al 2 O 3), сера или сульфаты с добавкой кокса, сульфиды. С такими катализаторами стекла не получались однородными, а разделялись на различные по составу фазы. Одна из них образовывала в стекле капли, равномерно распределенные в другой фазе. В состав фотоситаллов вводят в качестве светочувствительных добавок Au, Ag, Cu в сочетании с сенсибилизаторами. Применение элементов платиновой группы (Pt, Re, Pd, Os, Ir) не требует присутствия сенсибилизаторов. Меняя режим термообработки, можно регулировать размеры и состав выделяющихся кристаллов и соответственно свойства материалов. Все стеклокристаллические материалы состоят из стекла и мелких (не более 1-2 мкм) равномерно распределенных кристаллов, причем содержание кристаллической фазы в зависимости от технологии получения колебались от 30-50 до 90% и более.
С целью удешевления производства и комплексного использования сырья для изготовления ситаллов привлечены: доменный шлак вместе с кварцевым песком - для получения шлакоситаллов; магматические горные породы основного состава (базальты (см. БАЗАЛЬТ) , габбро (см. ГАББРО) , траппы (см. ТРАППЫ) ), метаморфические породы (тремолитовые и тальковые сланцы), осадочные породы (лессовые суглинки, известковая глина), нефелиновый концентрат - для получения петроситаллов.
Для получения фотоситаллов изделия после отжига облучают ультрафиолетовыми, рентгеновскими или гамма-лучами. Проявление скрытого изображения происходит при нагревании стекол в интервале между температурой размягчения и отжига в течение 8 - 60 мин. Если облучать не всю поверхность изделия, а лишь определенные участки фотоситалла, то можно вызвать локальную кристаллизацию в заданном объеме. В ситаллах, изготовленных из светочувствительных стекол, получают непрозрачные белые или цветные трехмерные изображения. Различная растворимость кристаллической и прозрачной стекловидной фаз открывает возможности получения выпуклого изображения и производства из фотоситаллов технических изделий с сеткой прецизионно выполненных отверстий любого сечения. Закристаллизованные участки значительно легче растворяются в плавиковой кислоте, чем примыкающие к ним стеклообразные области.
Жаропрочность, электропроводность, механическая прочность зависят не только от свойств фаз, но в большей степени от структуры и потому не являются аддитивными. Плотная микростуктура обеспечивает высокую твердость и сопротивление абразивному износу. Повышение степени закристаллизованности увеличивает модуль упругости. Улучшению механических, термических, электроизоляционных свойQҠматериала и химической стойкости способствует низкое содержание стекловидной фазы. Контроль фазового состава и структуры в связи с тонкозернистостью ситаллов осуществляется в основном методами рентгенофазового анализа и электронной микроскопии.
Применение
Так как синтез ситаллов может быть осуществлен с учетом заранее заданных требований, ситаллы могут отличаться каким-либо одним главным свойством, например, механической или термической прочностью, химической устойчивостью, износостойкостью, прозрачностью и др., или обладать комплексом необходимых свойств. Это предопределило широкий спектр использования этих кристаллических материалов.
Высокие эксплуатационные характеристики ситалловых изделий (прочность и износостойкость, химическая стойкость, способность выдерживать высокие температурные перепады) обеспечивают этому классу материалов возможность широкого применения в строительстве в качестве облицовочного материала, элементов слоистых панелей в конструкциях промышленных зданий. Шлакоситалл хорошо зарекомендовал себя в качестве материала для настила полов промышленных и гражданских зданий, для облицовки наружных и внутренних стен, для футеровки (см. ФУТЕРОВКА) строительных конструкций, подверженных химическим воздействиям и абразивному износу. Для расширения цветовой гаммы шлакоситалла его поверхность можно декорировать силикатными эмалями.
Ситалл обладает высокой прочностью, твердостью, химической и термической стойкость, низким температурным коэффициент расширения, поэтому на предприятиях химической, коксохимической и нефтеперерабатывающей отраслей промышленности используют изделия из ситалла (панели, трубы, электроизоляторы и др.). Их получают методом стекольной или керамической технологии. Ситаллы применяют также для герметизации электровакуумных приборов, в оптике и т. д.
Фотоситаллы находят широкое применение в микроэлектронике, ракетной технике, космосе, оптике, полиграфии и бытовых приборах: из фотоситалла изготавливают перфорированные диски, применяемые в катодно-лучевых трубках и т.д.
Очень большое распространение в химическом машиностроении получили стеклокристаллические покрытия, наносимые на поверхность различных металлов для защиты их от коррозии, окисления и износа при обычных и повышенных температурах. Все шире области применения ситаллов в электронной промышленности. Их используют в качестве диэлектрической изоляции микросхем и межслойной изоляции печатных схем на керамических и других подложках. Ситаллы на основе горных пород (перлита и доломита) рекомендуются для изготовления высоковольтных стержневых и штыревых электроизоляторов.
В быту из ситаллов изготавливают жаропрочную хозяйственную посуду - кастрюли, жаровни, сотейники.


Энциклопедический словарь . 2009 .

Смотреть что такое "ситаллы" в других словарях:

    Ситаллы - – материалы, получаемые в результате объёмной кристаллизации стекла или шлака. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Ситаллы – стеклокристаллические материалы, неорганические материалы,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Стеклокристаллические материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределенных в стекловидной фазе. Высокая прочность, твердость, химическая и термическая стойкость, низкий температурный коэффициент расширения.… … Большой Энциклопедический словарь

    ситаллы - Материалы, получаемые в результате объёмной кристаллизации стекла или шлака [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики строительные материалы прочие EN glass ceramicssitall DE Sitall FR sital … Справочник технического переводчика

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    Ситаллы Энциклопедический словарь по металлургии

    СИТАЛЛЫ - закристаллизованные стекла стеклокристаллические материалы, получаемые при введении в расплавленное стекло затравки (катализаторов). Изменяя состав стекла или катализатора и режим термической обработки, получают ситаллы с определенными свойствами … Металлургический словарь

    Стеклокристаллические материалы, неорганические материалы, получаемые в результате объёмной кристаллизации стекол (См. Стекло) и состоящие из одной или несколько кристаллических фаз, равномерно распределённых в стекловидной фазе. Подбором … Большая советская энциклопедия

    - (стеклокристаллич. материалы), неорг. материалы, получаемые направленной кристаллизацией разл. стекол при их термич. обработке. Состоят из одной или нескольких кристаллич. фаз. В С. мелкодисперсные кристаллы (до 2000 нм) равномерно распределены в … Химическая энциклопедия, Зверев Виктор Алексеевич, Кривопустова Екатерина Всеволодовна, Точилина Татьяна Вячеславовна. Понятие "оптические материалы" охватывает сегодня огромное множество оптических сред, различающихся не только показателем преломления и коэффициентом дисперсии, но и прозрачностью для… Купить за 1655 грн (только Украина)


Ситаллы или стеклокристаллические материалы получают из стекол специального состава при помощи контролируемой кристаллизации. Они занимают промежуточное положение между обычными стеклами и керамикой, поэтому иногда их называют стеклокерамикой . Структура ситаллов представляет собой смесь очень мелких (размерами 0,01-1 мкм) беспорядочно ориентированных кристаллов (60-95%) и остаточного стекла (40-5%). Исходное стекло по химическому составу отличается от остаточного стекла, в котором накапливаются ионы, не входящие в состав кристаллов. Такая структура создается в стеклянных изделиях после двойного отжига: первый отжиг нужен для формирования центров кристаллизации, второй – для выращивания кристаллов на готовых центрах. Для образования кристаллов в стекла вводят Li 2 O, TiO 2 , Al 2 O 3 и другие соединения.

В зависимости от образования центров кристаллизации ситаллы подразделяются на термоситаллы и фотоситаллы. В термоситаллах для образования центров кристаллизации используют оксиды или фториды NiO 2 , P 2 O 5 , NaF и другие (несколько процентов). При отжиге термоситалла получается высокая и однородная плотность кристаллов. В фотоситаллах используют малые добавки золота, серебра, платины или меди. Центры кристаллизации формируются под действием облучения ультрафиолетовым светом и отжига. Необлученные участки остаются аморфными после отжига.

Фотоситаллы применяют как фоточувствительные материалы. Термоситаллы имеют универсальное применение: как износостойкие материалы используются для деталей гидромашин, узлов трения, защитных эмалей; как прочные стабильные диэлектрики – для радиодеталей, плат и т.п.

Стремление избавится от главных недостатков стекла, повысить его устойчивость к механическим и термическим воздействиям привело к созданию за счет управляемой кристаллизации нового кристаллического материала – ситалла. Ситалл отличается от стекла мелкокристаллической микроструктурой, причем размеры кристаллов около 1 мкм, а их содержание достигает 50% - 90% по объему.

Ситаллы получают преимущественно по стекольной технологии из вязкой стекломассы спецсостава. Помимо нее применяется в масштабе керамическая технология. В процессе ситаллизации стекла наиболее существенно изменяются следующие его свойства:

1. Расчет механической прочности, особенно испытание на изгиб. Причина состоит в том, что поверхностные трещины, наталкиваясь на кристаллы, не могут разравниваться так интенсивно как в стекле.

2. Повышается нагревостойкость и температура начала дефор­мации, так как диапазон температур размягчение-плавление зна­чительно сужается по сравнению со стеклами.

Важное значение имеют литиево – алюминиевые ситаллы LiO 2 – Al 2 O 3 – SiO 2 , ТКЛР которых хорошо согласуются с кремнием, что позволяет применить его для изготовления корпусов БИС. В таблице 5 приведено сравнение современного литиевого ситалла и аналогичных по значению ТКЛР стекла и композиционной стеклокерамики, состоящей из 80% стекла и 20% Al 2 O 3 .

Таблица 5 - Сравнение свойств материалов

Наименование параметра

Значение параметра

стекло С52-1

стеклокерамика

ситалл ПГБ-30

Прочность, Мпа

ТКЛР, ·10, К -1

tg δ·10

Электрическая прочность, МВ/м

Температура начала деформации, К

Нагревостойкость, К

Видно, что по многим параметрам ситалл превосходит стекло и композиции на основе стекла. Свойства ситаллов определяются структурой и фазовым составом. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре. Свойства ситалла изотропны. В них совершенно отсутствует всякая пористость. Усадка при кристаллизации – до 2 %. Большая абразивная стойкость делает их малочувствительными к поверх­ностным дефектам. Стеклокристаллические материалы обладают высокой химической устойчивостью к кислотам и щелочам, не окисляются даже при высоких температу­рах. Они газонепроницаемы и обладают нулевым водопоглощением. Ситаллы относят к хрупким материалам, но по твердости они приближаются к стали.

От керамики ситаллы отличаются хорошей обрабатываемостью, отсутствием пористости, и меньшей стоимостью. Ситаллы марок СТ32, СТ38, СТ50 (цифра обозначает значение ТКЛР) в виде полированных пластин 0,5-1мм, размером 60х48 мм – являются основным материалом подложек тонкопленочных ГИС.

Ничто так искусно не дополняет женственный образ, как утонченный камень ситалл в ювелирных изделиях. Мир узнал о данном самоцвете еще во времена СССР, когда отечественный физик, лауреат многочисленных премий имени Иосифа Сталина - Исаак Ильич Китайгородский, в лабораторных условиях открыл объемную кристаллизацию стекла (образование в целостном стеклянном теле более мелких кристаллов, спровоцированное извне).

Ранние упоминания

Существует мнение, что получение первых образцов ситалла датируется 1739 годом. В те времена французский естествоиспытатель и академик - Рене Антуан Реомюр, активно осуществлял экспериментальную деятельность, с целью получения стекла, устойчивого к высоким температурам.

Результатом стараний академика стал минерал, по своим физическим и химическим свойствам напоминающий фарфор. При этом камень ситалл имел молочный оттенок и практически не пропускал свет, из-за множества мелких кристаллов, образовавшихся внутри цельного стеклянного тела. Реомюр посчитал свое творение бессмысленным, и ситалл затерялся во тьме веков, вплоть до 20 столетия.

Свойства

Как и любые другие минералы, ситаллы имеют свойства, которым присущи определенные физические и химические характеристики. К ним относятся:

  • Низкая плотность камня - ее показатель колеблется от 3.2, до 3.4 грамм на см3.
  • Значение абсолютного преломления света - от 1.65, до 1.7.
  • Высокая химическая и термическая устойчивость.
  • Твердость камня по Моосу: 6.5 - 7.5 единиц.
  • Минимальная температура плавления составляет 1 000 °C.
  • Предел прочности - 250 мПа.
  • Высокая непроницаемость по отношению к различным газам и влаге.

Так же стоит отметить, что существуют ситаллы со специализированными свойствами. Среди них:

  • Камни, обладающие собственным магнитным полем.
  • Идеально прозрачные.
  • Полупроводники.
  • Радиопрозрачные диэлектрики.

Применение ситалла

Сегодня применение ситаллов широко распространено не только в ювелирном деле, но также в строительной и технической областях человеческой деятельности. Сюда входят следующие отрасли:

  • Строение космических ракет, шаттлов, автомобильного и авиа транспорта.
  • Производство радиоэлектроники, стеклянных труб и панелей.
  • Изготовление оптики, в том числе астрономического назначения.
  • Лазерные и космические технологии.
  • Герметизация электровакуумных приборов.
  • Солнечные батареи.
  • Производство горнодобывающей техники.
  • Текстильная, химическая и буровая промышленность.
  • Размножение печатной продукции.
  • Микроэлектроника.
  • Область здравоохранения - изготовление протезов зубов и костей.
  • Изготовление стеклянных эмалей, защищающих различные материалы от воздействия вредоносных факторов внешней среды.

Ювелирное дело

Несмотря на то, что ситалл был изобретен Исааком Китайгородским еще в довоенное время, в ювелирную индустрию он попал только в 70 годы прошлого столетия. Почему?, и что за камень тогда, этот первый ситалл Китайгородского?" спросите Вы. Ответ кроется в материалах, используемых для синтеза данных минералов, в роли которых выступали отходы металлургической промышленности. Такое сырьё придавало ситаллу весьма мрачные цвета, среди которых присутствовали следующие оттенки:

  • Серый
  • Зеленый
  • Бурый

До 1970 года, камень использовался исключительно в качестве сырья для производства облицовочной плитки. Затем на смену невзрачным оттенкам пришли минералы с нежным молочным цветом. В ходе интенсивных разработок, ученые все больше стали задействовать различные пигменты. Благодаря этому, сегодня мы имеем ситаллы очень широкого цветового спектра.

Современная ювелирная промышленность, весьма активно задействует ситалл в качестве драгоценного камня, методом инкрустации изделий, изготовленных из драгоценных металлов. Что совсем неудивительно, ведь любой благородный металл засияет еще ярче в сочетании с подобным самоцветом.

Среди ювелирных украшений, инкрустированных ситаллом, часто встречаются следующие:

  • Кольца и перстни
  • Подвески
  • Броши
  • Браслеты
  • Запонки
  • Серьги
  • Ожерелья

Камень Лондон

Одними из самых редчайших драгоценных камней природного происхождения, являются топазы окраса Лондон. Высокая стоимость данных самоцветов обусловлена их уникальностью и минимальным количеством месторождений. Тем не менее, спрос на эти минералы не прекращает увеличиваться в геометрической прогрессии.

Высокая популярность топазов данного окраса, спровоцировала ученых на создание камня Лондон ситалл. Его оптические характеристики практически идентичны свойствам природного топаза, а твердость и термическая устойчивость превращают камень ситалл в материал, идеально пригодный для ювелирной обработки.

При поверхностном сравнении, природный голубой топаз и ситалл Лондон почти невозможно различить, так как цвет, плотность, показатель преломления света и блеск граней камней, во многом схожи. А если добавить к столь весомым преимуществам доступную стоимость ситалла, и его способность идеально сочетаться со всеми известными благородными металлами, то вопрос выбора разрешиться сам собой.

Камень Параиба

Еще один представитель уникальных драгоценных минералов, созданных самой природой - турмалин Параиба. Был открыт специалистами при разработке месторождения пегматитов, в конце 20 века, на восточном плоскогорье Бразилии, в штате с одноименным названием. Вскоре учеными было установлено, что возраст данной разновидности турмалина, равен возрасту древних динозавров. Между тем цена самоцветов резко возросла, несмотря на явное несовершенство многих экземпляров.

Искусственным аналогом натурального турмалина является Ситалл Параиба, который сохранил все самые лучшие черты оригинала:

  • Глубокий бирюзовый оттенок
  • Уникальную игру света в гранях
  • Яркий блеск
  • Твердость камня
  • Низкую плотность
  • Характерную устойчивость к механическим повреждениям.

Так же стоит отметить, что ювелирный ситалл Параиба отлично сочетается с любым благородным металлом, а цвет этого камня остается ярким и глубоким даже при весьма слабом источнике света